Ejemplos de consultas
Esta página asociada ofrece algunos ejemplos de posibles casos de uso que puede consultar al configurar sus consultas.
Una consulta habitual podría ser filtrar los eventos por tiempo.
Puede filtrarlos por la hora en que se produjeron. Las tablas de eventos están agrupadas por time
, lo que hace que filtrar por time
sea óptimo:
1
2
3
4
5
-- find custom events that occurred after 04/15/2019 @ 7:02pm (UTC) i.e., timestamp=1555354920
SELECT *
FROM users_behaviors_customevent_shared
WHERE time > 1555354920
LIMIT 10;
También puedes filtrar los eventos por la hora a la que se persistieron en el almacén de datos Snowflake utilizando sf_created_at
. sf_created_at
y time
no son lo mismo, pero suelen estar cerca, por lo que esta consulta debería tener unas características de rendimiento similares:
1
2
3
4
5
-- find custom events that arrived in Snowflake after time 04/15/2019 @ 7:02pm (UTC)
SELECT *
FROM users_behaviors_customevent_shared
WHERE sf_created_at > to_timestamp_ntz('2019-04-15 19:02:00')
LIMIT 10;
El valor de sf_created_at
sólo es fiable para los eventos que persistieron después de Nov 15th, 2019 9:31 pm UTC
.
Los nombres de las campañas y de los lienzos no están presentes en los propios eventos. En su lugar, se publican en una tabla de registro de cambios.
Puede ver los nombres de campaña de los eventos relacionados con una campaña uniéndolos a la tabla de registro de cambios de campaña mediante una consulta del tipo:
1
2
3
4
5
6
SELECT event.id, event.time, ccs.time, ccs.name, ccs.conversion_behaviors[event.conversion_behavior_index]
FROM USERS_CAMPAIGNS_CONVERSION_SHARED event
LEFT JOIN CHANGELOGS_CAMPAIGN_SHARED ccs
ON ccs.id = event.campaign_id
AND ccs.time < event.time
qualify row_number() over (partition by event.id ORDER BY ccs.time DESC) = 1;
Algunas cosas importantes a tener en cuenta son:
- Aquí se utilizan las funciones de ventana del Snowflake.
- La unión a la izquierda garantizará que también se incluyan los eventos no relacionados con una campaña.
- Si ve eventos con
campaign_id
s pero no nombres de campaña, entonces existe la posibilidad de que la campaña se creara con un nombre antes de que Data Sharing existiera como producto. - Puede ver los nombres de los lienzos utilizando una consulta similar, pero uniéndolos a la tabla
CHANGELOGS_CANVAS_SHARED
.
Si desea ver tanto los nombres de las campañas como los de los lienzos, es posible que tenga que utilizar la siguiente subconsulta:
1
2
3
4
5
6
7
8
9
10
11
SELECT campaign_join.*, canvas.name AS canvas_name
FROM
(SELECT e.id AS event_id, e.external_user_id, e.time, e.user_id, e.device_id, e.sf_created_at,
e.campaign_api_id, e.canvas_id, e.canvas_step_api_id,
campaign.name AS campaign_name
FROM USERS_MESSAGES_INAPPMESSAGE_CLICK_SHARED AS e
LEFT JOIN CHANGELOGS_CAMPAIGN_SHARED AS campaign ON campaign.id = e.campaign_id
WHERE e.time >= 1574830800 AND e.time <= 1575176399
qualify row_number() over (partition by e.id ORDER BY campaign.time DESC) = 1) AS campaign_join
LEFT JOIN CHANGELOGS_CANVAS_SHARED AS Canvas ON canvas.id = campaign_join.canvas_id
qualify row_number() over (partition by campaign_join.event_id ORDER BY canvas.time DESC) = 1;
Puedes utilizar esta consulta de embudo push para agregar datos de eventos en bruto de envíos push, datos de eventos en bruto de entregas y datos de eventos en bruto de aperturas. Esta consulta muestra cómo deben unirse todas las tablas, ya que cada evento bruto suele tener una tabla independiente:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
SELECT
COUNT(DISTINCT send."ID" ) AS "users_messages_pushnotification_send.push_sent",
COALESCE((COUNT(DISTINCT send."ID" )),0)-COALESCE((COUNT(DISTINCT bounce."ID" )),0) AS "users_messages_pushnotification_send.push_delivered",
COUNT(DISTINCT open."ID" ) AS "users_messages_pushnotification_open.push_opens"
FROM users_messages_pushnotification_send_shared AS send
LEFT JOIN USERS_MESSAGES_PUSHNOTIFICATION_OPEN_shared AS open ON (send."USER_ID")=(open."USER_ID")
AND
(send."DEVICE_ID")=(open."DEVICE_ID")
AND
((send."MESSAGE_VARIATION_API_ID")=(open."MESSAGE_VARIATION_API_ID")
OR
(send."CANVAS_STEP_API_ID")=(open."CANVAS_STEP_API_ID"))
LEFT JOIN users_messages_pushnotification_bounce_shared AS bounce ON (send."USER_ID")=(bounce."USER_ID")
AND
(send."DEVICE_ID")=(bounce."DEVICE_ID")
AND
((send."MESSAGE_VARIATION_API_ID")=(bounce."MESSAGE_VARIATION_API_ID")
OR
(send."CANVAS_STEP_API_ID")=(bounce."CANVAS_STEP_API_ID"))
LIMIT 500;
Puede utilizar esta consulta de cadencia diaria de mensajes de correo electrónico para analizar el tiempo transcurrido entre los correos electrónicos que recibe un usuario.
Por ejemplo, si un usuario recibe dos correos electrónicos en un día, entraría en 0 "days since last received"
. Si recibió un correo electrónico el lunes y otro el martes, entraría en la cohorte 1 "days since last received"
.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
WITH email_messaging_cadence AS (WITH deliveries AS
(SELECT TO_TIMESTAMP(time) AS delivered_timestamp,
email_address AS delivered_address,
message_variation_api_id AS d_message_variation_api_id,
canvas_step_api_id AS d_canvas_step_api_id,
campaign_api_id AS d_campaign_api_id,
canvas_api_id AS d_canvas_api_id,
id AS delivered_id,
rank() over (partition by delivered_address ORDER BY delivered_timestamp ASC) AS delivery_event,
min(delivered_timestamp) over (partition by delivered_address ORDER BY delivered_timestamp ASC) AS first_delivered,
datediff(day, lag(delivered_timestamp) over (partition by delivered_address ORDER BY delivered_timestamp ASC), delivered_timestamp) AS diff_days,
datediff(week, lag(delivered_timestamp) over (partition by delivered_address ORDER BY delivered_timestamp ASC), delivered_timestamp) AS diff_weeks
from USERS_MESSAGES_EMAIL_DELIVERY_SHARED GROUP BY 1,2,3,4,5,6,7), opens AS
(SELECT DISTINCT email_address AS open_address,
message_variation_api_id AS o_message_variation_api_id,
canvas_step_api_id AS o_canvas_step_api_id
FROM USERS_MESSAGES_EMAIL_OPEN_SHARED), clicks AS
(SELECT DISTINCT email_address AS click_address,
message_variation_api_id AS c_message_variation_api_id,
canvas_step_api_id AS c_canvas_step_api_id
FROM USERS_MESSAGES_EMAIL_CLICK_SHARED) SELECT * FROM deliveries
LEFT JOIN opens
ON (deliveries.delivered_address)=(opens.open_address)
AND ((deliveries.d_message_variation_api_id)=(opens.o_message_variation_api_id) OR (deliveries.d_canvas_step_api_id)=(opens.o_canvas_step_api_id))
LEFT JOIN clicks
ON (deliveries.delivered_address)=(clicks.click_address)
AND ((deliveries.d_message_variation_api_id)=(clicks.c_message_variation_api_id) OR (deliveries.d_canvas_step_api_id)=(clicks.c_canvas_step_api_id))
)
SELECT
email_messaging_cadence."DIFF_DAYS" AS "email_messaging_cadence.days_since_last_received",
(count(distinct email_messaging_cadence."OPEN_ADDRESS", email_messaging_cadence."O_MESSAGE_VARIATION_API_ID")
+count(distinct email_messaging_cadence."OPEN_ADDRESS", email_messaging_cadence."O_CANVAS_STEP_API_ID"))/(COUNT(DISTINCT email_messaging_cadence."DELIVERED_ID" )) AS "email_messaging_cadence.unique_open_rate"
FROM email_messaging_cadence GROUP BY 1
ORDER BY 1
LIMIT 500;
Puede utilizar esta consulta de clics únicos de correo electrónico para analizar los clics únicos de correo electrónico en una ventana de tiempo determinada. El algoritmo para calcularlo es el siguiente:
- Particionar los eventos por la clave (
app_group_id
,message_variation_id
,dispatch_id
,email_address
). - En cada partición, ordena los acontecimientos por tiempo, y el primer acontecimiento es siempre un evento único.
- Cada suceso posterior, si ocurrió más de siete días después de su predecesor, se considera un evento único.
Podemos utilizar las funciones de ventana de Snowflake para conseguirlo. La siguiente consulta nos da todos los clics de correo electrónico en los últimos 365 días e indica qué eventos son únicos en la columna is_unique
:
1
2
3
4
5
6
7
8
9
SELECT id, app_group_id, message_variation_api_id, dispatch_id, email_address, time,
ROW_NUMBER() OVER (PARTITION BY app_group_id, message_variation_api_id, dispatch_id, email_address order by time) row_number,
LAG(time, 1, time) OVER (PARTITION BY app_group_id, message_variation_api_id, dispatch_id, email_address order by time) previous_time,
time - previous_time AS diff,
IFF(row_number = 1, true, IFF(diff >= 7*24*3600, true, false)) AS is_unique
FROM USERS_MESSAGES_EMAIL_CLICK_SHARED
WHERE
time < DATE_PART('EPOCH_SECOND', TO_TIMESTAMP(CURRENT_TIMESTAMP()))
AND time > DATE_PART('EPOCH_SECOND', TO_TIMESTAMP(CURRENT_TIMESTAMP())) - 365*24*3600;
Si sólo quieres ver los eventos únicos, utiliza la cláusula QUALIFY
:
1
2
3
4
5
6
7
8
9
10
SELECT id, app_group_id, message_variation_api_id, dispatch_id, email_address, time,
ROW_NUMBER() OVER (PARTITION BY app_group_id, message_variation_api_id, dispatch_id, email_address order by time) row_number,
LAG(time, 1, time) OVER (PARTITION BY app_group_id, message_variation_api_id, dispatch_id, email_address order by time) previous_time,
time - previous_time AS diff,
IFF(row_number = 1, true, IFF(diff >= 7*24*3600, true, false)) AS is_unique
FROM USERS_MESSAGES_EMAIL_CLICK_SHARED
WHERE
time < DATE_PART('EPOCH_SECOND', TO_TIMESTAMP(CURRENT_TIMESTAMP()))
AND time > DATE_PART('EPOCH_SECOND', TO_TIMESTAMP(CURRENT_TIMESTAMP())) - 365*24*3600
QUALIFY is_unique = true;
Para ver más recuentos de eventos únicos agrupados por dirección de correo electrónico:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
WITH unique_events AS(
SELECT id, app_group_id, message_variation_api_id, dispatch_id, email_address, time,
ROW_NUMBER() OVER (PARTITION BY app_group_id, message_variation_api_id, dispatch_id, email_address order by time) row_number,
LAG(time, 1, time) OVER (PARTITION BY app_group_id, message_variation_api_id, dispatch_id, email_address order by time) previous_time,
time - previous_time AS diff,
IFF(row_number = 1, true, iff(diff >= 7*24*3600, true, false)) AS is_unique
FROM USERS_MESSAGES_EMAIL_CLICK_SHARED
WHERE
time < DATE_PART('EPOCH_SECOND', TO_TIMESTAMP(CURRENT_TIMESTAMP()))
AND time > DATE_PART('EPOCH_SECOND', TO_TIMESTAMP(CURRENT_TIMESTAMP())) - 365*24*3600
QUALIFY is_unique = true)
SELECT email_address, count(*) AS count
FROM unique_events
GROUP BY email_address;